Anúncios

Todas aulas presenciais são canceladas à partir do dia 16.03.2020 !



Informações sobre o curso de Espectroscopia Óptica 7600048, 2020-1

Semestre: 2020-1
Responsável: Prof. Philippe W. Courteille, philippe.courteille@ifsc.usp.br, Sala 45 do Grupo de Óptica
Início e termino das aulas: 19.2.2020 até 4.7.2020
Consultas: Sexta-feira à tarde na Sala 45 do Grupo de Óptica
Horário e local da aula: Quarta-feira 10h00 à 12h00 na sala 202 e Quinta-feira de 8h50 à 9h50 na sala 147
Feriados: 6.4.-12.4.2020 (semana santa), 20.4.-21.4. (Tiradentes), 1.5. (dia do trabalho)
Carga Horária (por semana):
Teória 4
Prática 3
Estudos 8
Duração 15 semanas
Total 225 horas
Ementa: Este curso tem como objetivo transmitir conceitos fundamentais de espectroscopia óptica, abordando tanto aspectos fundamentais quanto instrumentais, tais como interação da luz com a matéria, absorção, fluorescência, espectros atômicos e moleculares e suas características, processos de saturação, fontes e detectores de luz. Técnicas espectroscópicas de óptica linear serão introduzidas nesse curso.
Literatura recomendada:
Philippe W. Courteille, Apostila do Curso: A practical course in Optical Spectroscopy
Philippe W. Courteille, Apostila do Curso: Atom-Light Interaction and Basic Applications
Philippe W. Courteille, Apostila do Curso: Quantum Mechanics applied to Atoms and Light
W. Demtröder, Laser spectroscopy: basic concepts and instrumentation; 2. ed., Berlin, Springer Verlag (1996)
G.R. Fowles, Introduction to Modern Optics, New York, Holt, Rinehart and Winston (1968)
S.C. Zilio, Óptica Moderna, IFSC-USP (2009)



Exercícios

Para absolver este curso com sucesso, o aluno deve estudar a matéria indicada na coluna 'Tópicos' e disponibilizada na apostila do curso 'Optical Spectroscopy' até a data indicada em negrito na tabela embaixo. Também, ele deverá resolver os exercícios indicados em cor azul e enviar até a data indicada por e-mail ao endereço 'philippe.courteille@ifsc.usp.br'.

Data de entregaCapítulos da apostilaExercício Tópicos
---------------------- ---------------------------- ------------ -----------
19.02.2020 1.1.1 - 1.2.3 The area of optics and spectroscopy, energy of electromagnetic fields, blackbody radiation
20.02.2020 1.2.8.1Resistance of vacuum
20.02.2020 1.2.8.2The laws of Planck and Rayleigh-Jeans
27.02.2020 1.2.8.3The laws of Wien and Stefan-Boltzmann
27.02.2020 1.2.8.4Photons in a resonator
27.02.2020 1.2.8.5Number of modes in a cavity
04.03.2020 1.2.4 - 1.2.8 Einstein transition rates, light propagation in gases, spectral line profiles
05.03.2020 1.2.8.6Number of photons emitted from lasers and blackbodies
05.03.2020 1.2.8.7Number of photons per radiation mode
11.03.2020 1.3.1 -1.3.2 Perturbative two-level system, dressed states
12.03.2020 1.2.8.8Atoms in an optical cavity
12.03.2020 1.2.8.9Sodium atoms in an optical cavity
18.03.2020 1.3.3 Numerical simulation and quantum jumps
19.03.2020 1.2.8.10Applying the Lambert-Beer law
19.03.2020 1.3.5.1Rabi oscillation
19.03.2020 1.3.5.2Rabi method
download Tutorial Scientific Workplace (pdf)
download Tutorial Scientific Workplace (tex)
download Tutorial Matlab
19.03.2020 1.5.1 Level structure of alkali atoms
25.03.2020 1.5.2 Angular momentum and selection rules
26.03.2020 1.3.5.3Ramsey fringes
26.03.2020 1.3.5.4Light-shift
26.03.2020 1.3.5.6Non-hermitian time evolution (optional)
26.03.2020 1.5.3 - 1.5.4 Optical transitions in multilevel atoms
01.04.2020 1.5.5 Role of polarization
02.04.2020 1.5.6.1Zeeman shift and quantization axes
02.04.2020 1.5.6.2The Stern-Gerlach effect
08.04.2020 SSQM script: 3.4.1 - 3.5.2Harmonic quantum oscillator and coherent states
09.04.2020 SSQM script: 14.1.1 - 14.2.12nd quantization and Jaynes-Cummings model
15.04.2020 2.1.1 - 2.2.2 Photometric quantities and Gaussian optics
17.04.2020 2.1.2.1Emission of an argon laser
17.04.2020 2.2.3.1Imaging through a thin lens
17.04.2020 2.2.3.2Image of a convex lens
22.04.2020 2.3.1 Polarization optics and Jones matrices
23.04.2020 2.3.2 Fresnel formulae and Brewster angle
24.04.2020 2.2.3.7Diameter of a Gaussian beam
24.04.2020 2.2.3.8Diffraction of a Gaussian beam at a slit
24.04.2020 2.2.3.10Focusing a HeNe laser
29.04.2020 1.4.1 - 1.4.2 Width of spectral lines and saturation
30.04.2020 1.4.3 - 1.4.4 Homogeneous and inhomogeneous broadening mechanisms
01.05.2020 2.2.3.11Spatial filtering
01.05.2020 2.2.3.12Transverse mode selection in an Ar laser
01.05.2020 2.3.3.1Light power control using polarization optics
06.05.2020 4.1.1 - 4.1.2 Beam splitting and interferometry with Michelson
07.05.2020 4.1.3 - 4.1.4 Interferometry with Mach-Zehnder, Lyot filter
08.05.2020 2.3.3.4Thickness of a half-waveplate (Kauê)
08.05.2020 2.3.3.5Faraday isolator (Rafael)
08.05.2020 4.1.9.1Characterizing a piezo actuator (Jonathas)
13.05.2020 4.1.5 Mirrors and filters, optical resonators and fibers
14.05.2020 4.1.6 - 4.1.7 Lasers
15.05.2020 4.1.9.2Michelson interferometer (Isabela)
15.05.2020 4.1.9.4Rotating the polarization with a Mach-Zehnder interferometer (Jonathas)
15.05.2020 4.1.9.5Lyot filter (Kauê)
15.05.2020 4.1.9.6Wedge-shaped etalon (Mario)
15.05.2020 4.1.9.7Fabry-Pérot interferometer (Rafael)
20.05.2020 4.2.1 - 4.2.3 HeNe laser, laser diodes and extended cavity diode laser
21.05.2020 4.3.1 Acousto-optic modulation
22.05.2020 4.1.9.8Confocal and concentric cavities (Isabela)
22.05.2020 4.1.9.10Stability of a supercavity (Jonathas)
22.05.2020 4.1.9.12Interference and colors filters (Kauê)
22.05.2020 4.1.9.13Interference filter (Mario)
22.05.2020 4.1.9.14Cut-off wavelength of a single-mode fiber (Rafael)
27.05.2020 4.3.3 The Pockels effect, electro-optic phase modulation and optical sidebands
28.05.2020 4.4.1 - 4.4.3 Frequency beating, homo- and heterodyning
29.05.2020 4.1.9.15Tuning by tilting an etalon (Isabela)
29.05.2020 2.2.3.13Anamorphic prism (Jonathas)
29.05.2020 4.2.4.2Threshold inversion for lasing 1 (Kauê)
29.05.2020 4.2.4.3Threshold inversion for lasing 2 (Mario)
29.05.2020 2.2.3.15Beam steering with two wedged substrates (Rafael)
03.06.2020 5.2.2 Saturated absorption spectroscopy
04.06.2020 5.2.3 Frequency modulation and modulation transfer spectroscopy
05.06.2020 4.3.4.1Response time of an AOM (Isabela)
05.06.2020 4.3.4.2Intensity stabilization with a Pockels cell (Jonathas)
05.06.2020 4.3.4.3Generating sidebands with an EOM (Kauê)
05.06.2020 4.3.4.4Reflection of a phase-modulated signal from an optical cavity (Mario)
05.06.2020 4.4.4.1Pound-Drever-Hall signal (Rafael)
10.06.2020 5.3.1 & 5.4.4 Polarization spectroscopy and Raman spectroscopy
17.06.2020 A virtual lab tour by Dalila Rivero
18.06.2020 6.1.1 - 6.3.3 Intensity & frequency stabilization techniques

Suggestions for seminar topics:The Jaynes-Cummings model and the quantization of the electro-magnetic field
The method of quantum Monte-Carlo wavefunction simulation,
Saturation spectroscopy,
Intensity stabilization techniques,
Magneto-optical trap.